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Abstract

3D shape is a crucial but heavily underutilized cue in to-
day’s computer vision system, mostly due to the lack of a
good generic shape representation. With the recent avail-
ability of inexpensive 2.5D depth sensors (e.g. Microsoft
Kinect), it is becoming increasingly important to have a
powerful 3D shape model in the loop. Apart from object
recognition on 2.5D depth maps, recovering these incom-
plete 3D shapes to full 3D is critical for analyzing shape
variations. To this end, we propose to represent a geometric
3D shape as a probability distribution of binary variables
on a 3D voxel grid, using a Convolutional Deep Belief Net-
work. Our model, 3D ShapeNets, learns the distribution of
complex 3D shapes across different object categories and
arbitrary poses. It naturally supports joint object recogni-
tion and shape reconstruction from 2.5D depth maps, and
further, as an additional application it allows active object
recognition through view planning. We construct a large-
scale 3D CAD model dataset to train our model, and con-
duct extensive experiments to study our new representation.

1. Introduction

Since the establishment of computer vision as a field five
decades ago, 3D geometric shape has been considered to
be one of the most important cues in object recognition.
Even though there are many theories about 3D representa-
tion [5, 21], the success of 3D-based methods has largely
been limited to instance recognition, using model-based
keypoint matching [24, 30]. For object category recogni-
tion, 3D shape is not used in any state-of-the-art recognition
methods (e.g. [11, 18]), mostly due to the lack of a strong
generic representation for 3D geometric shapes. Further-
more, the recent availability of inexpensive 2.5D depth sen-
sors, such as the Microsoft Kinect, Google Project Tango,
Apple PrimeSense and Intel RealSense, has led to a re-
newed interest in 2.5D object recognition from depth maps.
Because the depth from these sensors is very reliable, 3D
shape can play a more important role in recognition. As a
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result, it is becoming increasingly important to have a strong
3D shape model in modern computer vision systems.

In this paper, we focus on generic object shapes. To
facilitate the understanding of shape variations, a natural
and challenging question is: given a depth map of an object
from one view, what are the possible 3D structures behind
it? For example, humans do not need to see the legs of a
table to know that they are there and potentially what they
might look like behind the visible surface. Similarly, even
though we may see a coffee mug from its side, we know
that it would have empty space in the middle, and a handle
on the side. While there is some good research on shape
synthesis [7] [16] and shape reconstruction [27] [22], they
are mostly limited to part-based assembly and suffer from
establishing bad local correspondences. Instead of model-
ing shapes by parts, we directly model elementary 3D vox-
els and try to capture complicated 3D shape distributions
across object categories and poses in general. This allows
us to infer the full 3D volume from a depth map without the
knowledge of object category and pose a priori. Apart from
the ability to jointly hallucinate missing parts and predict
labels, we are also able to compute the potential informa-
tion gain for recognition with regard to some missing vox-
els. This allows us to choose a subsequent view for obser-
vation when the category recognition from the first view is
not sufficiently confident. We also study this view planning
problem [25] as a novel application of our model.

To study this 3D shape representation, we propose 3D
ShapeNets, a method to represent a geometric 3D shape as
a probabilistic distribution of binary variables on a 3D voxel
grid. Our model uses a powerful Convolutional Deep Belief
Network (Figure 1) to learn the complex joint distribution
of all 3D voxels in a data-driven manner. To train this deep
model, we construct ModelNet, a large scale high quality
object dataset of 3D computer graphics CAD models. We
demonstrate the strength of our model at capturing com-
plex real world object shapes by drawing samples from the
model. Extensive experiments show that our model can rec-
ognize objects in single-view 2.5D depth images and hallu-
cinate the missing parts of depth maps. More importantly,
we found that our model generalizes well to real world data
from the NYU RGBD dataset [23] significantly outperform-
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Figure 1: 2.5D Object Recognition and Next-Best-View Prediction using 3D ShapeNets. Given a depth map of an object
(e.g. from RGB- D sensors), we convert the depth map into a volumetric representation and identify the observed surface
and free space. Conditioned on these observed voxels, we use our 3D ShapeNets model to infer the object category. If the
recognition is ambiguous, we use our model to predict which next view has the greatest potential to reduce the recognition
uncertainty. Then, a new view is selected and a new depth map is observed. We integrate both views to the volumetric
representation and use our model to recognize the category. If the uncertainty is still high, the same process is repeated.

ing existing approaches on single- view 2.5D object recogni-
tion. Furthermore, our model is effective for next- best- view
prediction in view planning for object recognition.

2. Related Work

There has been a large body of research on analyzing 3D
CAD model collections. Most of the works [12, 7, 16] use
an assembly- based approach to build deformable part- based
models. These methods are limited to a specific class of
shapes with small variations, with surface correspondence
being one of the key problems in such approaches. Since
we are interested in shapes across a variety of objects with
large variations, assembly- based modelling can be rather
cumbersome. For surface reconstruction when the input
scanning is corrupted, most related work [26, 3] is largely
based on smooth interpolation or extrapolation. These ap-
proaches can only tackle small missing holes or deficien-
cies. Template- based methods [27] are able to deal with
large space corruption but are mostly limited by the qual-
ity of available templates and often do not provide different
semantic interpretations of reconstructions.

The great generative power of deep learning models has
allowed researchers to build deep generative models for
2D shapes: most notably the DBN [14] to generate hand-
written digits and ShapeBM [10] to generate horses, etc.
These model are able to effectively capture intra- class varia-
tions. We also desire this generative ability for shape recon-
struction but we focus on more complex real world object
shapes in 3D. For 3D deep learning, Socher et al, [29] build
a discriminative convolutional- recursive neural network to
model images and depth maps. Although their algorithm is
applied to depth maps, it does not convert them to full 3D

for inference. Unlike [29], our model learns a shape dis-
tribution over a voxel grid. To the best of our knowledge,
we are the first work to build deep generative models in 3D.
To deal with the dimensionality of high resolution voxels,
inspired by [20]1, we apply the same convolution technique
in our model.

Unlike static object recognition in a single image, in ac-
tive object recognition [6] the sensor can move to new view
points to gain more information about the object. There-
fore, the Next- Best- View problem [25] of doing view plan-
ning based on current observation arises. Most previous
works [15, 9] build their view planning strategy using 2D
color information. However this multi- view problem is in-
trinsically 3D in nature. Atanasov et al, [1, 2] implement the
idea in real world robots, but they assume that there is only
one object associated with each class reducing their prob-
lem to instance level recognition with no intra- class vari-
ance. Similar to [9], we use mutual information to decide
the NBV. However, we consider this problem at the precise
voxel level allowing us to infer how voxels in a 3D region
would contribute to the reduction of recognition uncertainty.

3. 3D ShapeNets: A Convolutional Deep Belief
Network for 3D Shapes

To study 3D shape representation, we propose to rep-
resent a geometric 3D shape as a probability distribution of
binary variables on a 3D voxel grid. Each 3D mesh is repre-
sented as a binary tensor: 1 indicates the voxel is inside the
mesh surface, and 0 indicates the voxel is outside the mesh
(i.e., it is empty space). The grid size in our experiments is

1The model is precisely a convolutional DBM where all the connections
are undirected while ours is a convolutional DBN.
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(a) Architecture of our 3D ShapeNets.
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for each convolutional layer.
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(b) Data-driven visualization: For each neuron, we average the top 100 training exam-
ples with highest responses (>0.99) and crop the volume inside the receptive field. The
averaged result is visualized by transparency in 3D (Gray) and by the average surface
obtained from zero-crossing (Red). We observe that 3D ShapeNets is able to capture
complex structures in 3D space, from low-level surfaces and corners at L1, to objects
parts at L2 and L3, and whole objects at L4 and above.

Figure 2: 3D ShapeNets. Architecture and sample visualization from different layers.

30× 30× 30.
To represent the probability distribution of these binary

variables for 3D shapes, we designed a Convolutional Deep
Belief Network (CDBN). Deep Belief Networks (DBN)
[14] are a powerful class of probabilistic models often used
to model the joint probabilistic distribution over pixels and
labels in 2D images. However, adapting the model from
2D pixel data to 3D voxel data is non-trivial. A 3D voxel
volume with reasonable resolution (say 30 × 30 × 30)
would have the same dimensions as a high-resolution im-
age (165× 165). A fully connected DBN on such an image
would result in a huge number of parameters making the
model intractable to train effectively. Therefore, we propose
to use convolution to reduce model parameters by weight
sharing. However, different from typical convolutional deep
learning models (e.g. [20]), we do not use any form of pool-
ing in the hidden layers – while pooling may enhance the
invariance properties for recognition, in our case, it would
also lead to greater uncertainty during reconstruction.

The energy, E, of a convolutional layer in our model can
be computed as:

E(v,h) = −
∑
f

∑
j

(
hf
j

(
W f ∗ v

)
j
+ cfhf

j

)
−
∑
l

blvl

(1)
where vl denotes each visible unit, hf

j denotes each hidden

unit in a feature channel f , and W f denotes the convolu-
tional filter. The “∗” sign represents the convolution opera-
tion. In this energy definition, each visible unit vl is associ-
ated with a unique bias term bl to facilitate reconstruction,
and all hidden units {hf

j } in the same convolution channel
share the same bias term cf . Similar to [18], we also allow
for a convolution stride.

A 3D shape is represented as a 24 × 24 × 24 voxel grid
with 3 extra cells of padding in both directions to reduce
the convolution border artifacts. The labels are presented as
standard one of K softmax variables. The final architecture
of our model is illustrated in Figure 2(a). The first layer has
48 filters of size 6 and stride 2; the second layer has 160
filters of size 5 and stride 2 (i.e., each filter has 48×5×5×5
parameters); the third layer has 512 filters of size 4; each
convolution filter is connected to all the feature channels in
the previous layer; the fourth layer is a standard fully con-
nected RBM with 1200 hidden units; and the fifth and final
layer with 4000 hidden units takes as input a combination of
multinomial label variables and Bernoulli feature variables.
The top layer forms an associative memory DBN as indi-
cated by the bi-directional arrows, while all the other layer
connections are directed top-down.

We first pre-train the model in a layer-wise fashion fol-
lowed by a generative fine-tuning procedure. During pre-
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Figure 3: View-based 2.5D Object Recognition. (1) illustrates that a depth map taken from a physical object in the 3D
world. (2) shows the depth image captured from the back of the chair. A slice is used for visualization. (3) shows the profile
of the slice and different types of voxels. The surface voxels of the chair xo are in red, and the occluded voxels xu are in
blue. (4) shows the recognition and shape completion result, conditioned on the observed free space and surface.

training, the first four layers are trained using standard
Contrastive Divergence [13], while the top layer is trained
more carefully using Fast Persistent Contrastive Divergence
(FPCD) [31]. Once the lower layer is learned, the weights
are fixed and the hidden activations are fed into the next
layer as input. Our fine- tuning procedure is similar to wake
sleep algorithm [14] except that we keep the weights tied.
In the wake phase, we propagate the data bottom- up and use
the activations to collect the positive learning signal. In the
sleep phase, we maintain a persistent chain on the topmost
layer and propagate the data top- down to collect the nega-
tive learning signal. This fine- tuning procedure mimics the
recognition and generation behavior of the model and works
well in practice. We visualize some of the learned filters in
Figure 2(b).

During pre- training of the first layer, we collect learning
signal only to receptive fields which are non- empty. Be-
cause of the nature of the data, empty spaces occupy a large
proportion of the whole volume, which have no information
for the RBM and would distract the learning. Our experi-
ment shows that ignoring those learning signals during gra-
dient computation results in our model learning more mean-
ingful filters. In addition, for the first layer, we also add
sparsity regularization to restrict the mean activation of the
hidden units to be a small constant (following the method
of [19]). During pre- training of the topmost RBM where
the joint distribution of labels and high- level abstractions
are learned, we duplicate the label units 10 times to increase
their significance.

4. View-based 2.5D Object Recognition and
Reconstruction

4.1. View-based Sampling

After training the CDBN, the model learns the joint dis-
tribution p(x, y) of voxel data x and object category label
y ∈ {1, · · · ,K}. Although the model is trained on com-
plete 3D shapes, it is able to recognize objects in single-
view 2.5D depth maps (e.g., from RGB- D sensors). As

shown in Figure 3, the 2.5D depth map is first converted into
a volumetric representation where we categorize each voxel
as free space, surface or occluded, depending on whether
it is in front of, on, or behind the visible surface (i.e., the
depth value) from the depth map. The free space and sur-
face voxels are considered to be observed, and the occluded
voxels are regarded as missing data. The test data is rep-
resented by x = (xo,xu), where xo refers to the observed
free space and surface voxels, while xu refers to the un-
known voxels. Recognizing the object category involves
estimating p(y|xo).

We approximate the posterior distribution p(y|xo) by
Gibbs sampling. The sampling procedure is as follows.
We first initialize xu to a random value and propagate the
data x = (xo,xu) bottom up to sample for a label y from
p(y|xo,xu). Then the high level signal is propagated down
to sample for voxels x. We clamp the observed voxels xo

in this sample x and do another bottom up pass. This up-
down sampling procedure is run for about 50 iterations re-
sulting in shape completion, x, and its corresponding label
y. The above sampling procedure is run in parallel for a
large number of particles resulting in a variety of comple-
tion results corresponding to potentially different classes.
The final category label corresponds to the most frequently
observed class.

4.2. Next-Best-View Prediction

Object recognition from a single- view can sometimes be
challenging, both for humans and computers. However, if
an observer is allowed to view the object from another view
point when recognition fails from the first view point, we
may be able to significantly reduce the recognition uncer-
tainty. Given the current view, our model is able to predict
which next view would be optimal for discriminating the
object category.

The inputs to our next- best- view system are observed
voxels xo of an unknown object captured by a depth cam-
era from a single view, and a finite list of next- view candi-
dates {Vi} representing the camera rotation and translation
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Figure 4: Next-Best-View Prediction. [Row 1, Col 1]: the
observed (red) and unknown (blue) voxels from a single
view. [Row 2- 4, Col 1]: three possible completion sam-
ples generated by conditioning on (xo,xu). [Row 1, Col 2-
6]: five possible camera positions Vi, front top, left- sided,
tilted bottom, front, top. [Row 2- 4, Col 2- 6]: predict the
new visibility pattern of the object given the possible shape
and camera position Vi.

in 3D. An algorithm chooses the next- view from the list that
has the highest potential to reduce the recognition uncer-
tainty. Note that during this view planning process, we do
not observe any new data, and hence there is no improve-
ment on the confidence of p(y|xo = xo).

The original recognition uncertainty, H , is given by the
entropy of y conditioned on the observed xo:

H = H (p(y|xo = xo))

= −
K∑

k=1

p(y = k|xo = xo)log p(y = k|xo = xo)
(2)

where the conditional probability p(y|xo = xo) can be ap-
proximated as before by sampling from p(y,xu|xo = xo)
and marginalizing xu.

When the camera is moved to another view Vi, some of
the previously unobserved voxels xu may become observed
based on its actual shape. Different views Vi will result in
different visibility of these unobserved voxels xu. A view
with the potential to see distinctive parts of objects (e.g.
arms of chairs) may be a better next view. However, since
the actual shape is partially unknown2, we will hallucinate
that region from our model. As shown in Figure 4, condi-
tioning on xo = xo, we can sample many shapes to gen-
erate hypotheses of the actual shape, and then render each
hypothesis to obtain the depth maps observed from differ-
ent views, Vi. In this way, we can simulate the new depth
maps for different views on different samples and compute
the potential reduction in recognition uncertainty.

Mathematically, let xi
n = Render(xu,xo,V

i) \ xo de-
note the new observed voxels (both free space and surface)

2If the 3D shape is fully observed, adding more views will not help to
reduce the recognition uncertainty in any algorithm purely based on 3D
shapes, including our 3D ShapeNets.

Figure 5: ModelNet dataset. Top: word cloud visualization
of the ModelNet dataset based on the number of images in
each category. Larger font size indicates more instances in
the corresponding category. Bottom: examples of 3D mod-
els from different categories.

in the next view Vi. We have xi
n ⊆ xu, and they are un-

known variables that will be marginalized in the following
equation. Then the potential recognition uncertainty for Vi

is measured by this conditional entropy,

Hi = H
(
p(y|xi

n,xo = xo)
)

=
∑
xi
n

p(xi
n|xo = xo)H(y|xi

n,xo = xo). (3)

The above conditional entropy could be calculated by first
sampling enough xu from p(xu|xo = xo), doing the 3D
rendering to obtain 2.5D depth map in order to get xi

n

from xu, and then taking each xi
n to calculate H(y|xi

n =
xi
n,xo = xo) as before.

According to information theory, the reduction of en-
tropy H − Hi = I(y;xi

n|xo = xo) ≥ 0 is the mutual in-
formation between y and xi

n conditioned on xo. This meets
our intuition that observing more data will always poten-
tially reduce the uncertainty. With this definition, our view
planning algorithm is to simply choose the view that maxi-
mizes this mutual information,

V∗ = argmaxViI(y;xi
n|xo = xo). (4)

Our view planning scheme can naturally be extended to
a sequence of view planning steps. After deciding the best
candidate to move for the first frame, we physically move
the camera there and capture the other object surface from
that view. The object surfaces from all previous views are
merged together as our new observation xo, allowing us to
run our view planning scheme again.
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Figure 6: Shape Sampling. Example shapes generated by
sampling our 3D ShapeNets for each category.

5. ModelNet: A Large-scale 3D Model Dataset
Training a 3D shape model that captures intra-class vari-

ance requires a large collection of 3D shapes. Previous
CAD datasets (e.g., [28]) are limited both in the variety of
categories and the number of examples per category. There-
fore, we construct ModelNet, a new large scale 3D CAD
model dataset.

To construct ModelNet, we downloaded 3D CAD mod-
els from Google 3D Warehouse by querying object category
names. We query common object categories from the SUN
database [32] that contain no less than 20 object instances
per category, removing the ones with too few search re-
sults, resulting in a total of 585 categories. We also include
models from the Princeton Shape Benchmark [28]. Af-
ter downloading, we remove mis-categorized models using
Amazon Mechanical Turk. Turkers are shown a sequence
of thumbnails of the models and answer “Yes” or “No” as
to whether the category label matches the model. The au-
thors then manually checked each 3D model and removed
irrelevant objects from each CAD model (e.g, floor, thumb-
nail image, person standing next to the object, etc) so that
each mesh model contains only one object belongs to the
labeled category. We also discarded unrealistic (overly sim-
plified models or ones that only contain images of the ob-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

 

 

[37.53]Spherical Harmonic

[42.84]Light Field

[62.81]Our 5th layer finetuned

Figure 7: Mesh Retrieval. Precision-recall curves and av-
erage precision [in brackets] for 3D mesh retrieval.

ject) and duplicate models. Compared to [28], which con-
sists of 6670 models in 161 categories, our new dataset is 19
times larger containing 127,915 3D CAD models belonging
to 585 unique object categories. Examples of major object
categories and dataset statistics are shown in Figure 5.

6. Experiments
To have the same categories with NYU Depth V2 dataset

[23], we choose 10 common indoor object categories from
ModelNet with 4899 unique CAD models. We enlarge the
data by rotating each CAD model every 30 degrees along
the gravity direction (i.e., 12 poses per model). Figure 6
shows some shapes sampled from our trained model.
6.1. 3D Shape Classification and Retrieval

Deep learning has been widely used as a feature extrac-
tion technique. Here, we are also interested in how well
the features learned from 3D ShapeNets compare with other
state-of-the-art 3D mesh features. We discriminatively fine-
tune 3D ShapeNets by replacing the top layer with class
labels and use the 5th layer as features. For comparison, we
choose Light Field descriptor [8] (LFD, 4700 dimensions)
and Spherical Harmonic descriptor [17] (SPH, 544 dimen-
sions), which performed best among all descriptors [28].

We conduct 3D classification and retrieval experiments
to evaluate our features. Of the 4899 CAD models, 3899
are used for training and 1000 (100 per category) for test-
ing. For classification, we train a linear SVM to classify a
mesh to one of 10 object categories using each of the fea-
tures mentioned above, and use accuracy to evaluate the
performance. Our deep features significantly outperform
the baselines achieving 84.1% accuracy while LFD [8] and
SPH [17] achieve 80.7% and 78.5% respectively.

For retrieval, we use L2 distance to measure the similar-
ity of the shapes between each pair of test samples. Given
a query from the test set, a ranked list of the remaining



test data is returned according to the similarity measure3.
The retrieval performance is evaluated by a precision recall
curve as shown in Figure 7. Since both of the baseline mesh
features (LFD and SPH) are rotation invariant, from the per-
formance we have achieved, we believe 3D ShapeNets must
have learned this invariance during training. Despite using
a significantly lower resolution mesh as compared to the
baseline descriptors, 3D ShapeNets outperforms them by a
large margin. We believe that a volumetric representation
facilitates our feature learning.

6.2. View-based 2.5D Recognition
To evaluate 3D ShapeNets for 2.5D depth-based object

recognition task, we set up an experiment on the NYU
RGBD dataset with Kinect depth maps [23]. We create
each testing example by cropping the 3D point cloud from
the 3D bounding boxes. The segmentation mask is used
to remove outlier depth in the bounding box. Then we di-
rectly apply our model trained on CAD models to NYU
dataset. This is absolutely non-trivial because the statis-
tics of real world depth are significantly different from the
perfect CAD models used for training. In Figure 9, we visu-
alize the successful recognitions and reconstructions. Note
that 3D ShapeNets is even able to partially reconstruct the
“monitor” despite the bad scanning caused by the reflec-
tion problem. To further boost recognition, we finetune our
model on the NYU dataset. By simply assigning invisible
voxels as 0 (i.e. only a shape slice in 3D) and rotating train-
ing examples every 30 degrees, finetuning works reasonably
well in practice.

As a baseline approach, we use k nearest-neighbor
matching in our low resolution voxel space. Testing depth
maps are converted to voxel representation and compared
with each of the training samples. As a more sophisticated
high resolution baseline, we match the testing point cloud
to each our 3D mesh models using Iterated Closest Point
method [4] and use the top 10 matches to vote for the labels.
We also compare our result with [29] which is the state-of-
the-art deep learning model applied on RGB-D data. To
train and test their model, 2D bounding boxes are obtained
by projecting the 3D bounding box to the image plane, and
object segmentations are also used to extract features. 1390
instances are used to train the algorithm of [29] and perform
our discriminative finetuning, while the remaining 495 in-
stances are used for testing all five methods. Table 1 sum-
marizes the recognition results.

6.3. Next-Best-View Prediction
For our view planning strategy, computation of the term

p(xi
n|xo = xo) is critical. When the observation xo is am-

biguous, samples drawn from p(xi
n|xo = xo) should have

varieties across different categories. When the observation
3For our feature and SPH we use the L2 norm, and for LFD we use the

distance measure from [8].

Input GT 3D ShapeNets completion result NN

Figure 8: Shape Completion. From left to right: input
depth map from a single view, ground truth shape, shape
completion result (4 cols), nearest neighbor result (1 col).

is rich, samples should be limited to very few categories.
Since xi

n is the surface of the completions, we could just
test the shape completion performance p(xu|xo = xo). In
Figure 8, our results give reasonable shapes across different
categories. We also match the nearest neighbor in the train-
ing set to show that our algorithm is not just memorizing
the shape and it can generalize well.

To evaluate our view planning strategy, we use CAD
models from the test set to create synthetic rendering of
depth maps. We evaluate the accuracy by running our 3D
ShapeNets model on the integration depth maps of both
the first view and the selected second view. A good view-
planning strategy will result in a better recognition accu-
racy. Note that next-best-view selection is always coupled
with the recognition algorithm. We prepare three base-
line methods for comparison : 1) random selection among
the candidate views. 2) choose the view with the highest
new visibility (yellow voxels, NBV for reconstruction). 3)
choose the view which is farthest away from the previous
view (based on camera center distance). In our experiment,
we generate 8 view candidates randomly distributed on the
sphere of the object, pointing to the region near the object
center and, we randomly choose 200 test examples (20 per
category) from our testing set. Table 2 reports the recog-
nition accuracy of different view planning strategies with
the same recognition 3D ShapeNets. We observe that our
entropy based method outperforms other strategies for se-
lecting new views.

7. Conclusion

To study 3D shape representation for objects, we propose
a convolutional deep belief network to represent a geomet-
ric 3D shape as a probability distribution of binary variables
on a 3D voxel grid. We construct ModelNet, a large-scale
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Figure 9: Successful cases of our view-based recognition and reconstruction on NYU dataset [23]. In each example, we
show the RGB color crop, the segmented depth map, and the shape reconstruction from two view points.
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[29] Depth 0.000 0.729 0.806 0.100 0.466 0.222 0.343 0.481 0.415 0.200 0.376

NN 0.429 0.446 0.395 0.176 0.467 0.333 0.188 0.458 0.455 0.400 0.374
ICP 0.571 0.608 0.194 0.375 0.733 0.389 0.438 0.349 0.052 1.000 0.471

3D ShapeNets 0.142 0.500 0.685 0.100 0.366 0.500 0.719 0.277 0.377 0.700 0.437
3D ShapeNets finetuned 0.857 0.703 0.919 0.300 0.500 0.500 0.625 0.735 0.247 0.400 0.579

[29] RGB 0.142 0.743 0.766 0.150 0.266 0.166 0.218 0.313 0.376 0.200 0.334
[29] RGBD 0.000 0.743 0.693 0.175 0.466 0.388 0.468 0.602 0.441 0.500 0.448

Table 1: Accuracy for View-based 2.5D Recognition on NYU dataset [23]. The first four rows are algorithms that use
only depth information. The last two rows are algorithms that also use color information. Our 3D ShapeNets as a generative
model performs reasonably well as compared to the other methods. After discriminative finetuning, our method achieves the
best performance by a large margin of over 10%.

bathtub bed chair desk dresser monitor nightstand sofa table toilet all
Ours 0.80 1.00 0.85 0.50 0.45 0.85 0.75 0.85 0.95 1.00 0.80

Max Visibility 0.85 0.85 0.85 0.50 0.45 0.85 0.75 0.85 0.90 0.95 0.78
Furthest Away 0.65 0.85 0.75 0.55 0.25 0.85 0.65 0.50 1.00 0.85 0.69

Random Selection 0.60 0.80 0.75 0.50 0.45 0.90 0.70 0.65 0.90 0.90 0.72

Table 2: Comparison of Different Next-Best-View Selections Based on Recognition Accuracy from Two Views. Based
on the algorithms’ choice, we obtain the actual depth map for the next view and recognize the objects using two views by our
3D ShapeNets to compute the accuracies.

3D CAD model dataset to train our model, and use it to
jointly recognize and reconstruct objects from a single-view
2.5D depth map (e.g. from popular RGB-D sensors). We
demonstrate that that our model significantly outperforms
existing approaches on a variety of recognition tasks, and is
also a promising approach for next-best-view planning. Fu-
ture work includes constructing a large-scale Kinect-based
2.5D dataset so that we can train 3D ShapeNets with all
categories from ModelNet and thoroughly evaluate it using
this 2.5D dataset.
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